/* Target-dependent code for GNU/Linux on MIPS processors. Copyright 2001, 2002, 2004 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include "gdbcore.h" #include "target.h" #include "solib-svr4.h" #include "osabi.h" #include "mips-tdep.h" #include "gdb_string.h" #include "gdb_assert.h" #include "frame.h" #include "trad-frame.h" #include "tramp-frame.h" /* Copied from . */ #define ELF_NGREG 45 #define ELF_NFPREG 33 typedef unsigned char elf_greg_t[4]; typedef elf_greg_t elf_gregset_t[ELF_NGREG]; typedef unsigned char elf_fpreg_t[8]; typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG]; /* 0 - 31 are integer registers, 32 - 63 are fp registers. */ #define FPR_BASE 32 #define PC 64 #define CAUSE 65 #define BADVADDR 66 #define MMHI 67 #define MMLO 68 #define FPC_CSR 69 #define FPC_EIR 70 #define EF_REG0 6 #define EF_REG31 37 #define EF_LO 38 #define EF_HI 39 #define EF_CP0_EPC 40 #define EF_CP0_BADVADDR 41 #define EF_CP0_STATUS 42 #define EF_CP0_CAUSE 43 #define EF_SIZE 180 /* Figure out where the longjmp will land. We expect the first arg to be a pointer to the jmp_buf structure from which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc is copied into PC. This routine returns 1 on success. */ #define MIPS_LINUX_JB_ELEMENT_SIZE 4 #define MIPS_LINUX_JB_PC 0 static int mips_linux_get_longjmp_target (CORE_ADDR *pc) { CORE_ADDR jb_addr; char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT]; jb_addr = read_register (A0_REGNUM); if (target_read_memory (jb_addr + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE, buf, TARGET_PTR_BIT / TARGET_CHAR_BIT)) return 0; *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT); return 1; } /* Transform the bits comprising a 32-bit register to the right size for regcache_raw_supply(). This is needed when mips_isa_regsize() is 8. */ static void supply_32bit_reg (int regnum, const void *addr) { char buf[MAX_REGISTER_SIZE]; store_signed_integer (buf, register_size (current_gdbarch, regnum), extract_signed_integer (addr, 4)); regcache_raw_supply (current_regcache, regnum, buf); } /* Unpack an elf_gregset_t into GDB's register cache. */ void supply_gregset (elf_gregset_t *gregsetp) { int regi; elf_greg_t *regp = *gregsetp; char zerobuf[MAX_REGISTER_SIZE]; memset (zerobuf, 0, MAX_REGISTER_SIZE); for (regi = EF_REG0; regi <= EF_REG31; regi++) supply_32bit_reg ((regi - EF_REG0), (char *)(regp + regi)); supply_32bit_reg (mips_regnum (current_gdbarch)->lo, (char *)(regp + EF_LO)); supply_32bit_reg (mips_regnum (current_gdbarch)->hi, (char *)(regp + EF_HI)); supply_32bit_reg (mips_regnum (current_gdbarch)->pc, (char *)(regp + EF_CP0_EPC)); supply_32bit_reg (mips_regnum (current_gdbarch)->badvaddr, (char *)(regp + EF_CP0_BADVADDR)); supply_32bit_reg (PS_REGNUM, (char *)(regp + EF_CP0_STATUS)); supply_32bit_reg (mips_regnum (current_gdbarch)->cause, (char *)(regp + EF_CP0_CAUSE)); /* Fill inaccessible registers with zero. */ regcache_raw_supply (current_regcache, UNUSED_REGNUM, zerobuf); for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++) regcache_raw_supply (current_regcache, regi, zerobuf); } /* Pack our registers (or one register) into an elf_gregset_t. */ void fill_gregset (elf_gregset_t *gregsetp, int regno) { int regaddr, regi; elf_greg_t *regp = *gregsetp; void *dst; if (regno == -1) { memset (regp, 0, sizeof (elf_gregset_t)); for (regi = 0; regi < 32; regi++) fill_gregset (gregsetp, regi); fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo); fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi); fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc); fill_gregset (gregsetp, mips_regnum (current_gdbarch)->badvaddr); fill_gregset (gregsetp, PS_REGNUM); fill_gregset (gregsetp, mips_regnum (current_gdbarch)->cause); return; } if (regno < 32) { dst = regp + regno + EF_REG0; regcache_raw_collect (current_regcache, regno, dst); return; } if (regno == mips_regnum (current_gdbarch)->lo) regaddr = EF_LO; else if (regno == mips_regnum (current_gdbarch)->hi) regaddr = EF_HI; else if (regno == mips_regnum (current_gdbarch)->pc) regaddr = EF_CP0_EPC; else if (regno == mips_regnum (current_gdbarch)->badvaddr) regaddr = EF_CP0_BADVADDR; else if (regno == PS_REGNUM) regaddr = EF_CP0_STATUS; else if (regno == mips_regnum (current_gdbarch)->cause) regaddr = EF_CP0_CAUSE; else regaddr = -1; if (regaddr != -1) { dst = regp + regaddr; regcache_raw_collect (current_regcache, regno, dst); } } /* Likewise, unpack an elf_fpregset_t. */ void supply_fpregset (elf_fpregset_t *fpregsetp) { int regi; char zerobuf[MAX_REGISTER_SIZE]; memset (zerobuf, 0, MAX_REGISTER_SIZE); for (regi = 0; regi < 32; regi++) regcache_raw_supply (current_regcache, FP0_REGNUM + regi, (char *)(*fpregsetp + regi)); regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->fp_control_status, (char *)(*fpregsetp + 32)); /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */ regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->fp_implementation_revision, zerobuf); } /* Likewise, pack one or all floating point registers into an elf_fpregset_t. */ void fill_fpregset (elf_fpregset_t *fpregsetp, int regno) { char *from, *to; if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32)) { from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)]; to = (char *) (*fpregsetp + regno - FP0_REGNUM); memcpy (to, from, register_size (current_gdbarch, regno - FP0_REGNUM)); } else if (regno == mips_regnum (current_gdbarch)->fp_control_status) { from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)]; to = (char *) (*fpregsetp + 32); memcpy (to, from, register_size (current_gdbarch, regno)); } else if (regno == -1) { int regi; for (regi = 0; regi < 32; regi++) fill_fpregset (fpregsetp, FP0_REGNUM + regi); fill_fpregset(fpregsetp, mips_regnum (current_gdbarch)->fp_control_status); } } /* Map gdb internal register number to ptrace ``address''. These ``addresses'' are normally defined in . */ static CORE_ADDR mips_linux_register_addr (int regno, CORE_ADDR blockend) { int regaddr; if (regno < 0 || regno >= NUM_REGS) error ("Bogon register number %d.", regno); if (regno < 32) regaddr = regno; else if ((regno >= mips_regnum (current_gdbarch)->fp0) && (regno < mips_regnum (current_gdbarch)->fp0 + 32)) regaddr = FPR_BASE + (regno - mips_regnum (current_gdbarch)->fp0); else if (regno == mips_regnum (current_gdbarch)->pc) regaddr = PC; else if (regno == mips_regnum (current_gdbarch)->cause) regaddr = CAUSE; else if (regno == mips_regnum (current_gdbarch)->badvaddr) regaddr = BADVADDR; else if (regno == mips_regnum (current_gdbarch)->lo) regaddr = MMLO; else if (regno == mips_regnum (current_gdbarch)->hi) regaddr = MMHI; else if (regno == mips_regnum (current_gdbarch)->fp_control_status) regaddr = FPC_CSR; else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision) regaddr = FPC_EIR; else error ("Unknowable register number %d.", regno); return regaddr; } /* Fetch (and possibly build) an appropriate link_map_offsets structure for native GNU/Linux MIPS targets using the struct offsets defined in link.h (but without actual reference to that file). This makes it possible to access GNU/Linux MIPS shared libraries from a GDB that was built on a different host platform (for cross debugging). */ static struct link_map_offsets * mips_linux_svr4_fetch_link_map_offsets (void) { static struct link_map_offsets lmo; static struct link_map_offsets *lmp = NULL; if (lmp == NULL) { lmp = &lmo; lmo.r_debug_size = 8; /* The actual size is 20 bytes, but this is all we need. */ lmo.r_map_offset = 4; lmo.r_map_size = 4; lmo.link_map_size = 20; lmo.l_addr_offset = 0; lmo.l_addr_size = 4; lmo.l_name_offset = 4; lmo.l_name_size = 4; lmo.l_next_offset = 12; lmo.l_next_size = 4; lmo.l_prev_offset = 16; lmo.l_prev_size = 4; } return lmp; } /* Support for 64-bit ABIs. */ /* Copied from . */ #define MIPS64_ELF_NGREG 45 #define MIPS64_ELF_NFPREG 33 typedef unsigned char mips64_elf_greg_t[8]; typedef mips64_elf_greg_t mips64_elf_gregset_t[MIPS64_ELF_NGREG]; typedef unsigned char mips64_elf_fpreg_t[8]; typedef mips64_elf_fpreg_t mips64_elf_fpregset_t[MIPS64_ELF_NFPREG]; /* 0 - 31 are integer registers, 32 - 63 are fp registers. */ #define MIPS64_FPR_BASE 32 #define MIPS64_PC 64 #define MIPS64_CAUSE 65 #define MIPS64_BADVADDR 66 #define MIPS64_MMHI 67 #define MIPS64_MMLO 68 #define MIPS64_FPC_CSR 69 #define MIPS64_FPC_EIR 70 #define MIPS64_EF_REG0 0 #define MIPS64_EF_REG31 31 #define MIPS64_EF_LO 32 #define MIPS64_EF_HI 33 #define MIPS64_EF_CP0_EPC 34 #define MIPS64_EF_CP0_BADVADDR 35 #define MIPS64_EF_CP0_STATUS 36 #define MIPS64_EF_CP0_CAUSE 37 #define MIPS64_EF_SIZE 304 /* Figure out where the longjmp will land. We expect the first arg to be a pointer to the jmp_buf structure from which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc is copied into PC. This routine returns 1 on success. */ /* Details about jmp_buf. */ #define MIPS64_LINUX_JB_PC 0 static int mips64_linux_get_longjmp_target (CORE_ADDR *pc) { CORE_ADDR jb_addr; void *buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT); int element_size = TARGET_PTR_BIT == 32 ? 4 : 8; jb_addr = read_register (A0_REGNUM); if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size, buf, TARGET_PTR_BIT / TARGET_CHAR_BIT)) return 0; *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT); return 1; } /* Unpack an elf_gregset_t into GDB's register cache. */ static void mips64_supply_gregset (mips64_elf_gregset_t *gregsetp) { int regi; mips64_elf_greg_t *regp = *gregsetp; char zerobuf[MAX_REGISTER_SIZE]; memset (zerobuf, 0, MAX_REGISTER_SIZE); for (regi = MIPS64_EF_REG0; regi <= MIPS64_EF_REG31; regi++) regcache_raw_supply (current_regcache, (regi - MIPS64_EF_REG0), (char *)(regp + regi)); regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->lo, (char *)(regp + MIPS64_EF_LO)); regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->hi, (char *)(regp + MIPS64_EF_HI)); regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->pc, (char *)(regp + MIPS64_EF_CP0_EPC)); regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->badvaddr, (char *)(regp + MIPS64_EF_CP0_BADVADDR)); regcache_raw_supply (current_regcache, PS_REGNUM, (char *)(regp + MIPS64_EF_CP0_STATUS)); regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->cause, (char *)(regp + MIPS64_EF_CP0_CAUSE)); /* Fill inaccessible registers with zero. */ regcache_raw_supply (current_regcache, UNUSED_REGNUM, zerobuf); for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++) regcache_raw_supply (current_regcache, regi, zerobuf); } /* Pack our registers (or one register) into an elf_gregset_t. */ static void mips64_fill_gregset (mips64_elf_gregset_t *gregsetp, int regno) { int regaddr, regi; mips64_elf_greg_t *regp = *gregsetp; void *src, *dst; if (regno == -1) { memset (regp, 0, sizeof (mips64_elf_gregset_t)); for (regi = 0; regi < 32; regi++) mips64_fill_gregset (gregsetp, regi); mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo); mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi); mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc); mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->badvaddr); mips64_fill_gregset (gregsetp, PS_REGNUM); mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->cause); return; } if (regno < 32) { dst = regp + regno + MIPS64_EF_REG0; regcache_raw_collect (current_regcache, regno, dst); return; } if (regno == mips_regnum (current_gdbarch)->lo) regaddr = MIPS64_EF_LO; else if (regno == mips_regnum (current_gdbarch)->hi) regaddr = MIPS64_EF_HI; else if (regno == mips_regnum (current_gdbarch)->pc) regaddr = MIPS64_EF_CP0_EPC; else if (regno == mips_regnum (current_gdbarch)->badvaddr) regaddr = MIPS64_EF_CP0_BADVADDR; else if (regno == PS_REGNUM) regaddr = MIPS64_EF_CP0_STATUS; else if (regno == mips_regnum (current_gdbarch)->cause) regaddr = MIPS64_EF_CP0_CAUSE; else regaddr = -1; if (regaddr != -1) { dst = regp + regaddr; regcache_raw_collect (current_regcache, regno, dst); } } /* Likewise, unpack an elf_fpregset_t. */ static void mips64_supply_fpregset (mips64_elf_fpregset_t *fpregsetp) { int regi; char zerobuf[MAX_REGISTER_SIZE]; memset (zerobuf, 0, MAX_REGISTER_SIZE); for (regi = 0; regi < 32; regi++) regcache_raw_supply (current_regcache, FP0_REGNUM + regi, (char *)(*fpregsetp + regi)); regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->fp_control_status, (char *)(*fpregsetp + 32)); /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */ regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->fp_implementation_revision, zerobuf); } /* Likewise, pack one or all floating point registers into an elf_fpregset_t. */ static void mips64_fill_fpregset (mips64_elf_fpregset_t *fpregsetp, int regno) { char *from, *to; if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32)) { from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)]; to = (char *) (*fpregsetp + regno - FP0_REGNUM); memcpy (to, from, register_size (current_gdbarch, regno - FP0_REGNUM)); } else if (regno == mips_regnum (current_gdbarch)->fp_control_status) { from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)]; to = (char *) (*fpregsetp + 32); memcpy (to, from, register_size (current_gdbarch, regno)); } else if (regno == -1) { int regi; for (regi = 0; regi < 32; regi++) mips64_fill_fpregset (fpregsetp, FP0_REGNUM + regi); mips64_fill_fpregset(fpregsetp, mips_regnum (current_gdbarch)->fp_control_status); } } /* Map gdb internal register number to ptrace ``address''. These ``addresses'' are normally defined in . */ static CORE_ADDR mips64_linux_register_addr (int regno, CORE_ADDR blockend) { int regaddr; if (regno < 0 || regno >= NUM_REGS) error ("Bogon register number %d.", regno); if (regno < 32) regaddr = regno; else if ((regno >= mips_regnum (current_gdbarch)->fp0) && (regno < mips_regnum (current_gdbarch)->fp0 + 32)) regaddr = MIPS64_FPR_BASE + (regno - FP0_REGNUM); else if (regno == mips_regnum (current_gdbarch)->pc) regaddr = MIPS64_PC; else if (regno == mips_regnum (current_gdbarch)->cause) regaddr = MIPS64_CAUSE; else if (regno == mips_regnum (current_gdbarch)->badvaddr) regaddr = MIPS64_BADVADDR; else if (regno == mips_regnum (current_gdbarch)->lo) regaddr = MIPS64_MMLO; else if (regno == mips_regnum (current_gdbarch)->hi) regaddr = MIPS64_MMHI; else if (regno == mips_regnum (current_gdbarch)->fp_control_status) regaddr = MIPS64_FPC_CSR; else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision) regaddr = MIPS64_FPC_EIR; else error ("Unknowable register number %d.", regno); return regaddr; } /* Use a local version of this function to get the correct types for regsets, until multi-arch core support is ready. */ static void fetch_core_registers (char *core_reg_sect, unsigned core_reg_size, int which, CORE_ADDR reg_addr) { elf_gregset_t gregset; elf_fpregset_t fpregset; mips64_elf_gregset_t gregset64; mips64_elf_fpregset_t fpregset64; if (which == 0) { if (core_reg_size == sizeof (gregset)) { memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset)); supply_gregset (&gregset); } else if (core_reg_size == sizeof (gregset64)) { memcpy ((char *) &gregset64, core_reg_sect, sizeof (gregset64)); mips64_supply_gregset (&gregset64); } else { warning ("wrong size gregset struct in core file"); } } else if (which == 2) { if (core_reg_size == sizeof (fpregset)) { memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset)); supply_fpregset (&fpregset); } else if (core_reg_size == sizeof (fpregset64)) { memcpy ((char *) &fpregset64, core_reg_sect, sizeof (fpregset64)); mips64_supply_fpregset (&fpregset64); } else { warning ("wrong size fpregset struct in core file"); } } } /* Register that we are able to handle ELF file formats using standard procfs "regset" structures. */ static struct core_fns regset_core_fns = { bfd_target_elf_flavour, /* core_flavour */ default_check_format, /* check_format */ default_core_sniffer, /* core_sniffer */ fetch_core_registers, /* core_read_registers */ NULL /* next */ }; /* Fetch (and possibly build) an appropriate link_map_offsets structure for native GNU/Linux MIPS targets using the struct offsets defined in link.h (but without actual reference to that file). This makes it possible to access GNU/Linux MIPS shared libraries from a GDB that was built on a different host platform (for cross debugging). */ static struct link_map_offsets * mips64_linux_svr4_fetch_link_map_offsets (void) { static struct link_map_offsets lmo; static struct link_map_offsets *lmp = NULL; if (lmp == NULL) { lmp = &lmo; lmo.r_debug_size = 16; /* The actual size is 40 bytes, but this is all we need. */ lmo.r_map_offset = 8; lmo.r_map_size = 8; lmo.link_map_size = 40; lmo.l_addr_offset = 0; lmo.l_addr_size = 8; lmo.l_name_offset = 8; lmo.l_name_size = 8; lmo.l_next_offset = 24; lmo.l_next_size = 8; lmo.l_prev_offset = 32; lmo.l_prev_size = 8; } return lmp; } /* Handle for obtaining pointer to the current register_addr() function for a given architecture. */ static struct gdbarch_data *register_addr_data; CORE_ADDR register_addr (int regno, CORE_ADDR blockend) { CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR) = gdbarch_data (current_gdbarch, register_addr_data); gdb_assert (register_addr_ptr != 0); return register_addr_ptr (regno, blockend); } static void set_mips_linux_register_addr (struct gdbarch *gdbarch, CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR)) { deprecated_set_gdbarch_data (gdbarch, register_addr_data, register_addr_ptr); } static void * init_register_addr_data (struct gdbarch *gdbarch) { return 0; } /* Check the code at PC for a dynamic linker lazy resolution stub. Because they aren't in the .plt section, we pattern-match on the code generated by GNU ld. They look like this: lw t9,0x8010(gp) addu t7,ra jalr t9,ra addiu t8,zero,INDEX (with the appropriate doubleword instructions for N64). Also return the dynamic symbol index used in the last instruction. */ static int mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name) { unsigned char buf[28], *p; ULONGEST insn, insn1; int n64 = (mips_abi (current_gdbarch) == MIPS_ABI_N64); read_memory (pc - 12, buf, 28); if (n64) { /* ld t9,0x8010(gp) */ insn1 = 0xdf998010; } else { /* lw t9,0x8010(gp) */ insn1 = 0x8f998010; } p = buf + 12; while (p >= buf) { insn = extract_unsigned_integer (p, 4); if (insn == insn1) break; p -= 4; } if (p < buf) return 0; insn = extract_unsigned_integer (p + 4, 4); if (n64) { /* daddu t7,ra */ if (insn != 0x03e0782d) return 0; } else { /* addu t7,ra */ if (insn != 0x03e07821) return 0; } insn = extract_unsigned_integer (p + 8, 4); /* jalr t9,ra */ if (insn != 0x0320f809) return 0; insn = extract_unsigned_integer (p + 12, 4); if (n64) { /* daddiu t8,zero,0 */ if ((insn & 0xffff0000) != 0x64180000) return 0; } else { /* addiu t8,zero,0 */ if ((insn & 0xffff0000) != 0x24180000) return 0; } return (insn & 0xffff); } /* Return non-zero iff PC belongs to the dynamic linker resolution code or to a stub. */ int mips_linux_in_dynsym_resolve_code (CORE_ADDR pc) { /* Check whether PC is in the dynamic linker. This also checks whether it is in the .plt section, which MIPS does not use. */ if (in_solib_dynsym_resolve_code (pc)) return 1; /* Pattern match for the stub. It would be nice if there were a more efficient way to avoid this check. */ if (mips_linux_in_dynsym_stub (pc, NULL)) return 1; return 0; } /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c, and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc implementation of this triggers at "fixup" from the same objfile as "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at "__dl_runtime_resolve" directly. An unresolved PLT entry will point to _dl_runtime_resolve, which will first call __dl_runtime_resolve, and then pass control to the resolved function. */ static CORE_ADDR mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc) { struct minimal_symbol *resolver; resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL); if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc) return frame_pc_unwind (get_current_frame ()); return 0; } /* Signal trampoline support. There are four supported layouts for a signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and n64 rt_sigframe. We handle them all independently; not the most efficient way, but simplest. First, declare all the unwinders. */ static void mips_linux_o32_sigframe_init (const struct tramp_frame *self, struct frame_info *next_frame, struct trad_frame_cache *this_cache, CORE_ADDR func); static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self, struct frame_info *next_frame, struct trad_frame_cache *this_cache, CORE_ADDR func); #define MIPS_NR_LINUX 4000 #define MIPS_NR_N64_LINUX 5000 #define MIPS_NR_N32_LINUX 6000 #define MIPS_NR_sigreturn MIPS_NR_LINUX + 119 #define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193 #define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211 #define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn #define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn #define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn #define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn #define MIPS_INST_SYSCALL 0x0000000c static const struct tramp_frame mips_linux_o32_sigframe = { SIGTRAMP_FRAME, 4, { { MIPS_INST_LI_V0_SIGRETURN, -1 }, { MIPS_INST_SYSCALL, -1 }, { TRAMP_SENTINEL_INSN, -1 } }, mips_linux_o32_sigframe_init }; static const struct tramp_frame mips_linux_o32_rt_sigframe = { SIGTRAMP_FRAME, 4, { { MIPS_INST_LI_V0_RT_SIGRETURN, -1 }, { MIPS_INST_SYSCALL, -1 }, { TRAMP_SENTINEL_INSN, -1 } }, mips_linux_o32_sigframe_init }; static const struct tramp_frame mips_linux_n32_rt_sigframe = { SIGTRAMP_FRAME, 4, { { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 }, { MIPS_INST_SYSCALL, -1 }, { TRAMP_SENTINEL_INSN, -1 } }, mips_linux_n32n64_sigframe_init }; static const struct tramp_frame mips_linux_n64_rt_sigframe = { SIGTRAMP_FRAME, 4, { MIPS_INST_LI_V0_N64_RT_SIGRETURN, MIPS_INST_SYSCALL, TRAMP_SENTINEL_INSN }, mips_linux_n32n64_sigframe_init }; /* *INDENT-OFF* */ /* The unwinder for o32 signal frames. The legacy structures look like this: struct sigframe { u32 sf_ass[4]; [argument save space for o32] u32 sf_code[2]; [signal trampoline] struct sigcontext sf_sc; sigset_t sf_mask; }; struct sigcontext { unsigned int sc_regmask; [Unused] unsigned int sc_status; unsigned long long sc_pc; unsigned long long sc_regs[32]; unsigned long long sc_fpregs[32]; unsigned int sc_ownedfp; unsigned int sc_fpc_csr; unsigned int sc_fpc_eir; [Unused] unsigned int sc_used_math; unsigned int sc_ssflags; [Unused] [Alignment hole of four bytes] unsigned long long sc_mdhi; unsigned long long sc_mdlo; unsigned int sc_cause; [Unused] unsigned int sc_badvaddr; [Unused] unsigned long sc_sigset[4]; [kernel's sigset_t] }; The RT signal frames look like this: struct rt_sigframe { u32 rs_ass[4]; [argument save space for o32] u32 rs_code[2] [signal trampoline] struct siginfo rs_info; struct ucontext rs_uc; }; struct ucontext { unsigned long uc_flags; struct ucontext *uc_link; stack_t uc_stack; [Alignment hole of four bytes] struct sigcontext uc_mcontext; sigset_t uc_sigmask; }; */ /* *INDENT-ON* */ #define SIGFRAME_CODE_OFFSET (4 * 4) #define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4) #define RTSIGFRAME_SIGINFO_SIZE 128 #define STACK_T_SIZE (3 * 4) #define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4) #define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \ + RTSIGFRAME_SIGINFO_SIZE \ + UCONTEXT_SIGCONTEXT_OFFSET) #define SIGCONTEXT_PC (1 * 8) #define SIGCONTEXT_REGS (2 * 8) #define SIGCONTEXT_FPREGS (34 * 8) #define SIGCONTEXT_FPCSR (66 * 8 + 4) #define SIGCONTEXT_HI (69 * 8) #define SIGCONTEXT_LO (70 * 8) #define SIGCONTEXT_CAUSE (71 * 8 + 0) #define SIGCONTEXT_BADVADDR (71 * 8 + 4) #define SIGCONTEXT_REG_SIZE 8 static void mips_linux_o32_sigframe_init (const struct tramp_frame *self, struct frame_info *next_frame, struct trad_frame_cache *this_cache, CORE_ADDR func) { int ireg, reg_position; CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET; const struct mips_regnum *regs = mips_regnum (current_gdbarch); if (self == &mips_linux_o32_sigframe) sigcontext_base += SIGFRAME_SIGCONTEXT_OFFSET; else sigcontext_base += RTSIGFRAME_SIGCONTEXT_OFFSET; /* I'm not proud of this hack. Eventually we will have the infrastructure to indicate the size of saved registers on a per-frame basis, but right now we don't; the kernel saves eight bytes but we only want four. */ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) sigcontext_base += 4; #if 0 trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS, sigcontext_base + SIGCONTEXT_REGS); #endif for (ireg = 1; ireg < 32; ireg++) trad_frame_set_reg_addr (this_cache, ireg + ZERO_REGNUM + NUM_REGS, sigcontext_base + SIGCONTEXT_REGS + ireg * SIGCONTEXT_REG_SIZE); for (ireg = 0; ireg < 32; ireg++) trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS, sigcontext_base + SIGCONTEXT_FPREGS + ireg * SIGCONTEXT_REG_SIZE); trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS, sigcontext_base + SIGCONTEXT_PC); trad_frame_set_reg_addr (this_cache, regs->fp_control_status + NUM_REGS, sigcontext_base + SIGCONTEXT_FPCSR); trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS, sigcontext_base + SIGCONTEXT_HI); trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS, sigcontext_base + SIGCONTEXT_LO); trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS, sigcontext_base + SIGCONTEXT_CAUSE); trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS, sigcontext_base + SIGCONTEXT_BADVADDR); /* Choice of the bottom of the sigframe is somewhat arbitrary. */ trad_frame_set_id (this_cache, frame_id_build (func - SIGFRAME_CODE_OFFSET, func)); } /* *INDENT-OFF* */ /* For N32/N64 things look different. There is no non-rt signal frame. struct rt_sigframe_n32 { u32 rs_ass[4]; [ argument save space for o32 ] u32 rs_code[2]; [ signal trampoline ] struct siginfo rs_info; struct ucontextn32 rs_uc; }; struct ucontextn32 { u32 uc_flags; s32 uc_link; stack32_t uc_stack; struct sigcontext uc_mcontext; sigset_t uc_sigmask; [ mask last for extensibility ] }; struct rt_sigframe_n32 { u32 rs_ass[4]; [ argument save space for o32 ] u32 rs_code[2]; [ signal trampoline ] struct siginfo rs_info; struct ucontext rs_uc; }; struct ucontext { unsigned long uc_flags; struct ucontext *uc_link; stack_t uc_stack; struct sigcontext uc_mcontext; sigset_t uc_sigmask; [ mask last for extensibility ] }; And the sigcontext is different (this is for both n32 and n64): struct sigcontext { unsigned long long sc_regs[32]; unsigned long long sc_fpregs[32]; unsigned long long sc_mdhi; unsigned long long sc_mdlo; unsigned long long sc_pc; unsigned int sc_status; unsigned int sc_fpc_csr; unsigned int sc_fpc_eir; unsigned int sc_used_math; unsigned int sc_cause; unsigned int sc_badvaddr; }; */ /* *INDENT-ON* */ #define N32_STACK_T_SIZE STACK_T_SIZE #define N64_STACK_T_SIZE (2 * 8 + 4) #define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4) #define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4) #define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \ + RTSIGFRAME_SIGINFO_SIZE \ + N32_UCONTEXT_SIGCONTEXT_OFFSET) #define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \ + RTSIGFRAME_SIGINFO_SIZE \ + N64_UCONTEXT_SIGCONTEXT_OFFSET) #define N64_SIGCONTEXT_REGS (0 * 8) #define N64_SIGCONTEXT_FPREGS (32 * 8) #define N64_SIGCONTEXT_HI (64 * 8) #define N64_SIGCONTEXT_LO (65 * 8) #define N64_SIGCONTEXT_PC (66 * 8) #define N64_SIGCONTEXT_FPCSR (67 * 8 + 1 * 4) #define N64_SIGCONTEXT_FIR (67 * 8 + 2 * 4) #define N64_SIGCONTEXT_CAUSE (67 * 8 + 4 * 4) #define N64_SIGCONTEXT_BADVADDR (67 * 8 + 5 * 4) #define N64_SIGCONTEXT_REG_SIZE 8 static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self, struct frame_info *next_frame, struct trad_frame_cache *this_cache, CORE_ADDR func) { int ireg, reg_position; CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET; const struct mips_regnum *regs = mips_regnum (current_gdbarch); if (self == &mips_linux_n32_rt_sigframe) sigcontext_base += N32_SIGFRAME_SIGCONTEXT_OFFSET; else sigcontext_base += N64_SIGFRAME_SIGCONTEXT_OFFSET; #if 0 trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS, sigcontext_base + N64_SIGCONTEXT_REGS); #endif for (ireg = 1; ireg < 32; ireg++) trad_frame_set_reg_addr (this_cache, ireg + ZERO_REGNUM + NUM_REGS, sigcontext_base + N64_SIGCONTEXT_REGS + ireg * N64_SIGCONTEXT_REG_SIZE); for (ireg = 0; ireg < 32; ireg++) trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS, sigcontext_base + N64_SIGCONTEXT_FPREGS + ireg * N64_SIGCONTEXT_REG_SIZE); trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS, sigcontext_base + N64_SIGCONTEXT_PC); trad_frame_set_reg_addr (this_cache, regs->fp_control_status + NUM_REGS, sigcontext_base + N64_SIGCONTEXT_FPCSR); trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS, sigcontext_base + N64_SIGCONTEXT_HI); trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS, sigcontext_base + N64_SIGCONTEXT_LO); trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS, sigcontext_base + N64_SIGCONTEXT_CAUSE); trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS, sigcontext_base + N64_SIGCONTEXT_BADVADDR); /* Choice of the bottom of the sigframe is somewhat arbitrary. */ trad_frame_set_id (this_cache, frame_id_build (func - SIGFRAME_CODE_OFFSET, func)); } /* Initialize one of the GNU/Linux OS ABIs. */ static void mips_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); enum mips_abi abi = mips_abi (gdbarch); switch (abi) { case MIPS_ABI_O32: set_gdbarch_get_longjmp_target (gdbarch, mips_linux_get_longjmp_target); set_solib_svr4_fetch_link_map_offsets (gdbarch, mips_linux_svr4_fetch_link_map_offsets); set_mips_linux_register_addr (gdbarch, mips_linux_register_addr); tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe); tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe); break; case MIPS_ABI_N32: set_gdbarch_get_longjmp_target (gdbarch, mips_linux_get_longjmp_target); set_solib_svr4_fetch_link_map_offsets (gdbarch, mips_linux_svr4_fetch_link_map_offsets); set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr); tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe); break; case MIPS_ABI_N64: set_gdbarch_get_longjmp_target (gdbarch, mips64_linux_get_longjmp_target); set_solib_svr4_fetch_link_map_offsets (gdbarch, mips64_linux_svr4_fetch_link_map_offsets); set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr); tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe); break; default: internal_error (__FILE__, __LINE__, "can't handle ABI"); break; } set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver); /* This overrides the MIPS16 stub support from mips-tdep. But no one uses MIPS16 on GNU/Linux yet, so this isn't much of a loss. */ set_gdbarch_in_solib_call_trampoline (gdbarch, mips_linux_in_dynsym_stub); } void _initialize_mips_linux_tdep (void) { const struct bfd_arch_info *arch_info; register_addr_data = gdbarch_data_register_post_init (init_register_addr_data); for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0); arch_info != NULL; arch_info = arch_info->next) { gdbarch_register_osabi (bfd_arch_mips, arch_info->mach, GDB_OSABI_LINUX, mips_linux_init_abi); } deprecated_add_core_fns (®set_core_fns); }